
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 26, 57±78 (1998)

OCTREE PARTITIONING OF HYBRID GRIDS FOR PARALLEL

ADAPTIVE VISCOUS FLOW SIMULATIONS

T. MINYARD AND Y. KALLINDERIS*

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin,
TX 78712, U.S.A.

SUMMARY

A parallel ®nite volume method for the Navier±Stokes equations with adaptive hybrid prismatic=tetrahedral grids
is presented and evaluated in terms of parallel performance. A new method of domain partitioning for complex
3D hybrid meshes is also presented. It is based on orthogonal bisection of a special octree corresponding to the
hybrid mesh. The octree is generated automatically and can handle any type of 3D geometry and domain
connectivity. One important property of the octree-based partitioning that is exploited is the octree's ability to
yield load-balanced partitions that follow the shape of the geometry. This biasing of the octree results in a
reduced number of grid elements on the interpartition boundaries and thus fewer data to communicate among
processors. Furthermore, the octree-based partitioning gives similar quality of partitions for very different
geometries, while requiring minimal user interaction and little computational time. The partitioning method is
evaluated in terms of quality of the subdomains as well as execution time. Viscous ¯ow simulations for different
geometries are employed to examine the effectiveness of the octree-based partitioning and to test the scalability
of parallel execution of the Navier±Stokes solver and hybrid grid adapter on two different parallel systems, the
Intel Paragon and the IBM SP2. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 57±78 (1998)

KEY WORDS: parallel processing; domain partitioning; hybrid grids; grid adaptation

1. INTRODUCTION

Recent trends in computational ¯uid dynamics (CFD) have shown a large increase in the

development of parallel algorithms for large-scale CFD simulations. Such parallel algorithms may

achieve computational speeds which surpass modern vector supercomputers by dividing the

computational domain onto a number of processors which perform computations independently.1,2

Part of the popularity of the parallel algorithms can be attributed to the ease with which a parallel

environment can be achieved. With the recent standardization of parallel communication schemes a

simple collection of workstations networked together can behave as a parallel machine and can in fact

run the same codes as those developed for state-of-the-art parallel architectures.3

Implementing CFD simulations in a parallel environment introduces a number of new dif®culties

CCC 0271±2091/98/010057±22 $17.50 Received 2 February 1996

1998 John Wiley & Sons, Ltd. Revised 21 January 1997

Correspondence to: Y. Kallinderis, Department of Aerospace Engineering and Engineering Mechanics, The University of
Texas at Austin, Austin, TX 78712, U.S.A.
Contract grant sponsor: NSF; Contract grant number: ASC-9357677
Contract sponsor: Texas Advanced Techanology Program; Contract grant Number: #003658-413

not encountered with serial algorithms. First, to achieve optimum scalability, parallel simulations

require computational domains to be partitioned equally so as to have identical loads on all

processors. These domains can have very complex geometries. The partitioning of the computational

domain should be automatic and ef®cient and should also seek to minimize the communication

requirements along interpartition boundaries. Furthermore, the partitioning algorithm should work

effectively for a variety of different geometries and mesh topologies.

Several approaches to partitioning of complex computational domains have been developed.4±8

Two of the more popular techniques are orthogonal recursive bisection and eigenvalue recursive

bisection. Orthogonal recursive bisection uses cutting planes to partition the grid based on the

centroidal co-ordinates of the cells. This approach is fast, but the number of elements on the partition

interfaces can be large. Moreover, the method cannot handle complex 3D grids easily. Eigenvalue

recursive bisection requires solution of eigenvalue problems and is quite expensive, but it reduces the

number of elements on partition interfaces.6,9 One of the most effective eigenvalue techniques is

recursive spectral bisection (RSB) which partitions on the basis of graph connectivity. This technique

has been used for partitioning of unstructured meshes to obtain high-quality subdomains.7,8

The accuracy and stability of a numerical method are almost always a function of the size and

shape of the grid elements that ®ll the computational domain. Therefore obtaining a mesh that can

follow complex surface geometries and ¯uid ¯ow patterns is of primary importance. Tetrahedra can

provide this ¯exibility in 3D, since they can cover complicated topologies more easily than can

hexahedral meshes.10 However, employment of tetrahedral cells for some regions of the ¯uid ¯ow,

such as boundary layers, is quite expensive. In these regions, strong solution gradients usually occur

in the direction normal to the surface, so large-aspect-ratio cells are commonly employed to resolve

the boundary layer. Structured grids are superior in capturing the directionality of the ¯ow ®eld in

viscous regions, since they can be aligned with the boundary layer. A compromise between the two

different types of meshes is the use of prismatic grids. Prismatic cells can have very high aspect ratio,

while providing geometric ¯exibility in covering complex surfaces.11 The semi-structured nature of the

prismatic grid results in a reduced amount of memory for storing the grid data structures.12 However,

prismatic cells cannot cover multiply connected domains. Thus using prismatic elements around the

surface of the body and tetrahedra to ®ll in the rest of the domain results in a hybrid grid.13,14

The initial meshes used for simulation of viscous ¯ows may not always yield the desired accuracy,

and improvement of the mesh may be necessary. Adaptive grid methods have evolved as an ef®cient

tool to obtain accurate numerical solutions without a priori knowledge of the grid resolution

necessary to resolve the ¯ow features. These algorithms detect the regions that have prominent ¯ow

features and increase the grid resolution locally in such areas.12,15±18 These adaptive grid algorithms

have been developed for sequential execution and have reached a level of maturity. However, the

area of parallel adaptive algorithms remains relatively unexplored.19±22 Other work in the general

area of parallel solvers for unstructured grids has been reported in References 23±25.

A key issue for parallel implementation of a ¯ow solver and grid adapter is that the algorithm

should be scalable. In other words, as the number of processors increases, the amount of execution

time should decrease proportionally. The factors which affect the scalability are the balance of work

among the processors and the time for communicating information from one processor to another.

Therefore scheduling the ¯ow of information among processors becomes crucial for parallel

performance. The communication pattern should be able to handle any arrangement and number of

partitions. Furthermore, it should not result in appreciable increase in communication time as the

number of processors grows, since this would render parallel execution not scalable.

The current work presents a parallel Navier±Stokes solver and grid adapter with hybrid

prismatic=tetrahedral grids. The parallel implementation of both algorithms is discussed and the

scalability results are examined for two different parallel systems, the Intel Paragon and the IBM SP2.

58 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

A new partitioning scheme is developed in which the orthogonal bisection approach is applied to a

special octree corresponding to the hybrid mesh. The resulting subdomains based on the octree have

fewer elements on the partition interface than if bisection of the grid cells were performed. The

generality of the octree-based partitioning is explored with respect to very different geometries.

Qualities of the resulting partitions are compared with those obtained by the recursive spectral

bisection method. Scaling of execution times of the octree partitioner with increasing number of

partitions is also examined.

2. ADAPTIVE NUMERICAL METHOD

2.1. Viscous ¯ow solver

The Navier±Stokes equations for viscous ¯ow are employed in the integral form

d

dt

�
O

U dO�
�
O

@FI

@x
� @GI

@y
� @HI

@z

� �
dO �

�
O

@FV

@x
� @GV

@y
� @HV

@z

� �
dO; �1�

where UT � �r; ru; rv; rw;E� is the state vector of unknown variables, FI;GI and HI are the inviscid

¯ux vectors and FV;GV and HV correspond to the viscous terms.

The volume integral containing the spatial derivatives in equation (1) is equivalent to a surface

integral via the divergence theorem. For example,�
O

@FI

@x
� @GI

@y
� @HI

@z

� �
dO �

�
@O
�FInx �GIny �HInz� dS; �2�

where nx; ny and nz are the components of the unit vector normal to the area element dS on the

boundary surface @O.

Evaluation of the above integral employs a special cells that surround each node (dual cells).

Figure 1(a) shows a 2D example of the dual areas for the nodes in a hybrid mesh. The faces of these

dual volumes pass through the midpoints of the edges that share the node. As a result, the summation

over all the dual mesh faces that constitute the boundary of the control volume around a node reduces

to summation over all edges of the mesh.12 Speci®cally, equation (1) is discretized as

@U

@t

� �
N

ON �
P

e

��FI ÿ FV�Sx � �GI ÿGV�Sy � �HI ÿHV�Sz�e � 0; �3�

where the summation is over the edges that share node N ;ON is the volume of the dual cell associated

with node N, Sx; Sy and Sz are the areas of the dual faces projected on the planes yz; xz and xy

respectively. The ¯ux vectors are considered at the midpoints of the edges. The viscous terms FV;GV

and HV consist of ®rst-order derivatives of the state variables, which need to be evaluated at the

middle of the edges. Evaluation of the viscous terms employs special cells that surround each edge

(edge dual volumes). An example edge dual area for a 2D hybrid mesh is shown in Figure 1(b).

Details of the method are given in Reference 12.

The state vector U is stored at the vertices (nodes) of the hybrid mesh. The solution at any

particular node N at time level n� 1 can expressed in terms of the solution at time level n using a

Taylor series expansion given by

Un�1
N � Un

N � dUn
N;

dUn
N �

@U

@t

� �n

N

Dt � @2U

@t2

� �n

N

�Dt�2
2
� O��Dt�3�: �4�

The temporal derivatives in the above expression are evaluated in terms of the spatial derivatives

using the governing equations according to the Lax±Wendroff approach, except that the viscous

OCTREE PARTITIONING OF HYBRID GRIDS 59

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

terms are not included in the calculation of @2U=@t2. Additional fourth-order smoothing is applied to

prevent oscillations in most regions of the ¯ow, except near shocks where second-order smoothing is

used. Local time steps are employed to advance the solution in time to steady state.

Three-dimensional Navier±Stokes computations usually require a large amount of memory. In the

present work the structure of the prismatic grid in one of the directions is exploited in order to reduce

storage to the amount required for a two-dimensional Navier±Stokes with triangles.12 All pointers

that are employed refer to the triangular faces of the ®rst prisms on the body surface (base faces),

with all prisms above the same base face forming a stack. A simple index (typical of structured grid

indexing) is suf®cient to refer to any prism cell belonging to the same stack. The base faces pointers

connect the faces to their corresponding edges and nodes.

Figure 1. Examples of (a) node and (b) edge dual areas for 2D hybrid grids

60 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

2.2. Hybrid grid adaptation

Two different types of grid adaptation are employed in order to provide an optimum mesh for

viscous ¯ow simulations. The prims are locally re®ned in the directions parallel to the surface, while

the tetrahedra can be re®ned either isotropically or directionally.12

A special type of adaptive re®nement of prisms is applied in the present work in order to preserve

the structure of the mesh along the normal-to-surface direction. The detected triangular faces on the

surface are divided, then all prisms above these faces are directionally divided along the lateral

directions. In other words, the triangular faces are divided but the quadrilateral faces are not. As a

consequence, the cells are not divided along the third direction that is normal to the surface. In this

way, grid interfaces within the prisms region are avoided and the structure of the grid along the

normal-to-surface direction is preserved. Therefore adaptation of the prims reduces to adaptation of

the triangular grid on the surface. This results in a simpler and less expensive algorithm in terms of

storage and CPU time compared with a 3D adaptation algorithm.

Two types of division are applied. The ®rst divides the triangular faces of the prisms into four

smaller triangles, while the second divides them into two, resulting in creation of four and two

subcells respectively. If two edges of the triangle are to be re®ned, the third is also re®ned to avoid

stretching. Transition cells may exist at the interface between different embedded regions that contain

hanging nodes in the middle of some of their edges owing to re®nement of neighbouring cells. These

cells are also divided.

In order to avoid stretched meshes created owing to several re®nements of the same cells, some

rules are de®ned as follows.

1. Only one level of re®nement=coarsening is allowed during each adaptation.

2. If the parent cell is re®ned according to one-edge division, then it is divided according to the

three-edge division at the next re®nement.

3. If the maximum adaptation level difference of neighbouring surface triangles around a node is

more than one, the coarsest triangles will be re®ned according to the three-edge division.

To satisfy all the above rules for grid smoothing, some iterations are required. Typically, the number

of iterations is less than ®ve.

The adaptation procedure for tetrahedra is very similar to that for prisms. The feature detector ¯ags

edges to be re®ned. The following three types of tetrahedra cell division are considered: (i) one edge

is re®ned, (ii) three edges on the same face are re®ned and (iii) all six edges are re®ned.

After all edges are ¯agged, each tetrahedral cell is visited and the ¯agged edges are counted. Then

the cell is ¯agged for division according to the above three types. In all cases that are different from

the three cases above, the cell is divided according to the third type of division. If two edges on the

same face are ¯agged, the third edge of that face is also marked. In order to avoid a stretched mesh,

the previous rules applied to prism adaptation are employed. The method of tetrahedral cell

adaptation employed in the present work is discussed in detail in Reference 12.

2.3. Implications for parallel implementation

The parallel implementation of the solver and adapter requires the addition of communication steps

so that the individual subdomains distributed among the processors can communicate information

along the interpartition boundaries. Two types of communication are required by the solver and

adapter: (i) node and (ii) edge communications. For the solver the majority of communications are

performed based on accumulation of residuals at the nodes. For each marching step of the solver, four

nodal communications must be made, while only one edge communication is necessary. The ®rst

nodal communication occurs during the calculation of the ®rst-order changes in time of the state

OCTREE PARTITIONING OF HYBRID GRIDS 61

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

vector at the nodes (equation (4)). These changes are initially calculated at the cell centre and then

distributed to the nodes. The accumulation of the changes at the nodes requires a communication

before further calculations can be processed. Evaluation of the viscous stresses at the middle of the

edges requiring an accumulation of the contribution from the surrounding cells at each edge. This

results in a communication step for the edges. The second and third nodal communications occur

during calculations for the arti®cial damping. The edge based operations to determine the pressure

switch for shock smoothing and to calculate the fourth-order smoothing terms are distributed to the

nodes and accumulated, thus necessitating two separate nodal communications. The ®nal

communication step transfers the total accumulated change in the state vector at the nodes among

the processors that share nodes. Then all processors can update the state vector at each of the nodes in

their respective subdomains, and calculations for the next marching step can proceed.

The hybrid grid adapter operates on edges of the mesh in order to ¯ag the ones for division as well

as to impose the constraints on allowable embedding level differences that were discussed in Section

2.2. The updating of the interface pointers is done through the interface edges that are divided, which

involves an exchange of information among neighbouring processors. It should be emphasized that

the length of the buffer that is sent across the partitions is equal to the number of those interface edges

that are divided and not to the total number of interpartition edges.

The most dominant communications are the nodal communications in the parallel solver. The

present work partitions the cells rather than nodes, which results in fewer grid points on the

interpartition boundaries.

2.4. Communication among processors

There are several ways the processors can exchange information. Two general ways are explored in

the present work. The ®rst will be termed the pipeline exchange, while the second will be called the

parallel exchange. Both methods are independent of the number and arrangement of the partitions

allocated to the processors. The pipeline exchange is just a simple exchange method in which the

communications proceed in ascending processor number order. In other words, the ®rst processor

communicates with the second, then with the third if necessary, then the fourth and so on. At the same

time the second processor waits for the ®rst and then has to communicate to the third after the ®rst is

done. This type of exchange is simplistic, without must care taken to minimize the number of

communications.

The parallel exchange strategy differs from the pipeline method in that the communication occurs

simultaneously between many pairs of processors. The ®rst step is to determine which partitions will

have to communicate with one another. The partitions are then coloured so that no neighbouring

partitions share the same colour. The colours are then paired with one another to form the

communication pattern. In this way, all processors can be active during a communication step (either

sending, receiving or both) and the minimum number of communication steps is needed. The number

of required steps in order to complete the exchange of information is equal to the maximum number

of partitions that are neighbours (i.e. share at least a point). In order to organize the ¯ow of messages

sent and received, three lists are constructed for both the shared nodes and edges. The ®rst stores the

ids of the neighbouring processors that each processor has to send information to, while the second

stores the ids of the processors that each processor will receive from. These two arrays have

dimensions of neib_max, which is the maximum number of neighbouring partitions over the domain.

This is the same as the number of communication steps needed. The third list stores the ids of the

shared elements on the partition interfaces.

62 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

3. OCTREE-BASED PARTITIONING OF HYBRID GRIDS

A special octree decomposition of the computational domain is constructed for partitioning of an

unstructured mesh. The octree is generated by recursive subdivision of the master octant, which

encompasses the entire computational domain, into successively smaller octants. A sweep over the

cells in the domain is performed and the cell is placed in the octant in which its centroid lies. When

the number of cells in an octant exceeds a speci®ed amount, typically 20, the octant is re®ned into

eight smaller octants and the cells that were in the parent octant are placed in the appropriate child

octant. This process continues until all cells in the domain are placed in their respective octants. The

resulting octree has signi®cantly fewer octants than the total number of grid cells. An example of the

octree for a tetrahedral mesh around a sphere is shown in Figure 2. A cut of the octree at the

equatorial plane is depicted.

Two advantages of the octree-based partitioning method are apparent when compared with

previous approaches for partitioning grid cells. First, the octree results in a structure that follows the

geometry of interest as shown in Figure 2. The computational cells are clustered around the body. As

a result the octants are re®ned more in this region, while the octants near the far ®eld remain

relatively large. This biasing of the octants to the grid geometry results in partitions that have a lower

surface-to-volume ratio, with fewer grid elements on the interpartition boundaries. The second

advantage of the special octree is a reduced amount of computational time for partitioning.

Generation of the octree is a fast process that requires only a small percentage of the total time for

partitioning of the grid, and once an octree is generated for a hybrid grid, it can be used for any

number of partitionings. Since the number of octants is only about 10% of the total grid cells, far

fewer calculations are needed for partitioning and a reduced amount of computational time is

realized.

The computational grid is divided into as many subgrids as processors using a partitioning

algorithm which consists of the following steps: (i) co-ordinate-based grouping of octants, (ii)

Figure 2. Two-dimensional view of special octree generated for a tetrahedral mesh around a sphere. The size and distribution of
the octants follow the geometry and grid cell distribution

OCTREE PARTITIONING OF HYBRID GRIDS 63

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

smoothing of partition boundaries and (iii) mapping of global grid data structures to the local

partitions. The following sections will present each of the steps using a tetrahedral grid around a

sphere as an example case.

3.1. Co-ordinate-based grouping of octants

The grid is partitioned by dividing up the corresponding octree and assigning the cells in an octant

to the appropriate subdomain. The octants are divided into groups based upon their centroidal co-

ordinates by cutting planes that are determined by the partitioner for the number of subdomains

desired. The co-ordinate-based cutting planes are better suited for division of an octree than for

partitioning of the computational cells. For example, if the cutting planes were used to partition the

unstructured 3D mesh about a sphere, then partitioning shown in Figure 3 would result. The future

shows the footprint of the partitions on the symmetry plane for a 16-processor case. Several of the

resulting subdomains are long and thin, with a high percentage of nodes and edges on interpartition

boundaries and cells that are disconnected. Figure 4 shows the partitioning of the octree

corresponding to the same tetrahedral grid for a sphere. The footprint of the resulting tetrahedral

subdomains on the symmetry plane is shown in Figure 5(a). The partitions are not as long and thin as

before and no disconnected cells are present. The percentage of nodes on the boundary has been

reduced for the octree partitioning. Furthermore, the computational time for subdivision of the octree

is much smaller than for division of the entire computational grid. In this case the grid contains over a

100,000 tetrahedra, but the corresponding octree has only 10,274 octants.

The structure of the prisms in the normal-to-surface direction is exploited. The prisms are de®ned

by their corresponding base faces on the surface. As a result, the stacks of prisms are partitioned by

simply partitioning the triangular surface mesh. All cells within each prism stack are assigned to the

same partition. In this way the data structure operations for partitioning, solving and adapting of the

Figure 3. Partitioning of a tetrahedral mesh about a sphere using co-ordinate-based cutting planes results in long and thin
subdomains with a high percentage of nodes and edges on the boundary and disconnected cells. A view of the 16 partitions on

the symmetry plane of the domain is shown

64 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

Figure 5. Resulting partitions using octre-based co-ordinate division (a) before and (b) after smoothing of partition interfaces.
Views of the 16 tetrahedral partitions on the symmetry plane are shown. The partition boundaries are no longer jagged and the

percentage of nodes and edges on the boundary has been reduced

Figure 4. Partitioning of special octree corresponding to tetrahedral mesh using co-ordinate-based cutting planes. A view of the
octant partitions is shown on the symmetry plane corresponding to the 16-partition case

OCTREE PARTITIONING OF HYBRID GRIDS 65

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

prismatic grid refer to the triangular surface mesh. This results in savings in both memory and

execution time.

3.2. Smoothing of interpretation boundaries

Owing to the unstructured nature of the grid, interpartition boundaries may be jagged, with a large

number of nodes and edges on partition interface. These boundaries can be improved by applying a

smoothing technique to the cells on the partition interfaces. At this stage of the partitioner the octree-

based co-ordinate subdivision has generated balanced subdomains and each cell has been assigned a

partition number. The smoothing process begins by determining which cells in the computational

domain are candidates for smoothing. A cell is ¯agged for smoothing if all its nodes are shared

between two neighbouring partitions. After ¯agging all the candidate cells, the partition interfaces are

altered by assigning half of the ¯agged cells to one partition and the other half to the neighbouring

partition. This process is repeated until almost all the ¯agged cells on the interfaces have been

smoothed. A typical number of such iterations is ®ve. The smoothing procedure also maintains the

load balance among the partitions. Figure 5(b) shows the previous octree-based partitioning of the

sphere tetrahedral grid after smoothing has been applied. Comparing Figure 5(b) with Figure 5(a), it

is observed that the irregular and jagged boundaries have now been improved, with a lower

percentage of nodes and edges on the boundary.

3.3. Mapping global data structures to local partitions

The 3D unstructured hybrid grid is uniquely de®ned as a collection of nodes, edges, faces and cells

which are collectively referred to as `elements'. The data structures de®ning the grid are split into P

subsets, where P is the number of desired processors. Each processor is assigned the subsets that

completely specify the subdomain allocated to it.

Within a subdomain an element of a particular type (cell=face=edge=node) is assigned a unique

integer id between one and the total number of elements of that type in that subdomain. This

simpli®es the storage mechanism, since the correlation between elements of different types can now

be expressed in terms of these ids. Thus an edge is a pair of integers �n1; n2�, where n1 and n2 are ids

of two nodes within the subdomain. These ids are completely local to a subdomain. There is no notion

of global numbering of elements across all processors. This is of particular signi®cance in the case of

a dynamically varying computational grid. In a global numbering scheme, all processors have to

communicate with each other whenever a global number is to be assigned to a newly created element.

This entails additional communication overhead and can prove to be a bottleneck. Furthermore, the

algorithms for dynamic updating of global numbers are cumbersome and not amenable to

parallelization.

An element that is shared between several processors has multiple copies of itself, one on each

processor that shares it. Furthermore, for every shared element within its partition a processor

maintains a list of processors that share it, as well as the id of that element on each of those

processors. This enables two processors that share a given element to communicate with each other

when data are to be transferred to that element.

In the present work, cells are partitioned among processors according to the co-ordinates of the

octant in which they lie. As a result, the boundaries between neighbouring partitions consist of edges

and points. These edges and points are duplicated across the boundaries. Therefore two main arrays

are employed in order to connect the duplicate elements. The pointer nint_nod(i, intnod), i � 1; 2,

stores the ids of the pairs of nodes at the interfaces, while the array nint_edg(i, intedg), i � 1; 2, lists

the ids of the pairs of edges.

66 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

4. PERFORMANCE OF HYBRID GRID PARTITIONER

The most important property of an effective grid partitioner is that it should give balanced

subdomains with a minimum number of elements on partition interfaces for all types of grid elements

and any complex geometry. Furthermore, the method should be as automated as possible and the

amount of time for partitioning should not increase drastically as the number of partitions increases.

This section presents the effectiveness of the hybrid grid partitioner by examining partition qualities

and timings obtained using the octree-based method. The partition qualities are compared with those

obtained from an established grid-partitioning method, namely recursive spectral bisection (RSB).

Several geometries are examined, including the sphere geometry and an aircraft con®guration with

and without engines. It should be noted that the octree-based partitioner is automated with minimal

user interaction. All the grids discussed in this paper were generated using the methods presented in

Reference 13.

For the current work the quality of a partition is de®ned as the percentage of grid points in a

subdomain that are on interpretation boundaries. This percentage relates the amount of

communication required for the parallel solver to the number of computations performed within a

Figure 6. Comparison of scaling of maximum percentage of nodes on interface boundaries for varying number of partitions.
Cases of (a) prismatic and (b) tetrahedral meshes around sphere: e, before smoothing; � , after smoothing; u, RSB

OCTREE PARTITIONING OF HYBRID GRIDS 67

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

subdomain. As this percentage increases, a larger portion of the computational time will have to be

spent transferring information to neighbouring processors.

The ®rst case tested was the hybrid grid for the sphere geometry. Figures 6(a) and 6(b) show the

reduction in the maximum percentage of nodes before and after smoothing for several load-balanced

prismatic and tetrahedral partitionings of the hybrid mesh about the sphere. The smoothing of

partition interfaces results in a substantial reduction in the percentages of interface nodes for the

tetrahedral subdomains. The ®gures also show how the present partitioning technique compares with

the RSB approach. For most of the partitionings the present method does almost as well as RSB when

comparing the maximum local percentage of nodes on partition interfaces. The average percentages

of nodes on the boundaries show the same trend as the maximum percentages when compared with

the RSB method. The percentages of edges in a partition that are on the interpartition boundaries also

follow the same trend as the node percentages, so only the node percentages will be examined for the

sake of brevity. It is also noted that the maximum number of neighbours for the octree-based

partitioning was about the same as the maximum number of neighbours for the RSB partitioning. The

maximum number of neighbouring partitions governs the number of communications, while the

percentage of nodes on interfaces corresponds to the amount of data for communication. Even though

RSB does slightly better for the static meshes, implementation of RSB in a parallel environment with

dynamic meshes is much more dif®cult than using a load balancer with octree-based partitioning

Figure 7. Signatures of 16 partitions on surface of HSCT aircraft con®guration (a) before and (b) after smoothing of partition
interfaces

68 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

strategies. Since RSB uses a connectivity-based partitioning approach, the partition shapes can

change signi®cantly after adaptation and a signi®cant portion of the grid and solution data would

need to be migrated among the processors.26

Partitioning of the hybrid mesh about a high-speed civil transport (HSCT) aircraft con®guration is

now considered. The initial hybrid mesh consists of approximately 120,000 nodes, 170,000

tetrahedra, 4400 surface triangles and 176,000 prisms. The corresponding octree used to partition this

mesh contains just over 15,000 octants. Figure 7(a) shows the signature of 16 partitions on the upper

surface of the HSCT before smoothing of the interpretation boundaries. The surface partitions after

smoothing are shown in Figure 7(b). The partition interfaces after smoothing are not as jagged as they

were previously and there is a lower percentage of nodes and edges on the boundaries. Figure 8(a)

compares the maximum local percentage of nodes on partition interfaces for the current octree

partitioning and a partitioning generated using RSB. The octree technique yielded a slightly higher

percentage of nodes on the boundaries than the RSB method. The octree partitioning of the

tetrahedral portion of the HSCT hybrid grid for a case with 16 partitions is shown in Figure 9(a). The

®gure shows the footprint of the partitions on the symmetry plane of the mesh. The octree biases the

partitioning around the aircraft geometry. The footprint of the resulting tetrahedral subdomains on the

Figure 8. Comparison of scaling of maximum percentage of nodes on interface boundaries for varying number of partitions.
Cases of (a) prismatic and (b) tetrahedral meshes around HSCT aircraft: e, octree-based partitioning; � , RSB

OCTREE PARTITIONING OF HYBRID GRIDS 69

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

symmetry plane after smoothing of the partition interfaces is shown in Figure 9(b). The partitions

have smooth boundaries with no disconnected cells. A comparison of the maximum local percentage

of nodes on the partition interfaces is presented in Figure 8(b). Again the percentage of nodes on

interpartition boundaries is only slightly less for RSB than for the present method.

The amount of execution time to partition three different hybrid grids is plotted versus increasing

number of partitions in Figure 10. The execution times increase linearly with increasing number of

partitions. These timings correspond to 10 smoothing iterations on the interpartition boundaries. The

largest amount of time is spent in smoothing the tetrahedral portions of the partitioning. Only 25% of

the total execution time is required for generating, sorting and dividing the octree. Approximately

Figure 9. Partitioning of the octree corresponding to the HSCT tetrahedral mesh using co-ordinate-based cutting planes results
in subdomains that are biased to the geometry. Signatures of the 16 (a) octant and (b) tetrahedral partitions are shown on the

symmetry plane

Figure 10. Scaling of execution time for partitioning of three different hybrid grids with number of partitions: e, sphere
geometry; � , HSCT aircraft con®guration without engines; u, HSCT aircraft con®guration with engines

70 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

10% of the time is for smoothing the prism boundaries and the rest of the time is spent in smoothing

the tetrahedra interfaces. The total execution time could be reduced by performing fewer iterations,

but the quality of the partitions will be slightly worse. However, most of the improvement in the

partition boundaries is accomplished in the ®rst few smoothing iterations, while the remaining

iterations improve the partition qualities only slightly.

Using the octree of a hybrid unstructured grid to partition the grid results in balanced subdomains

that have better qualities than standard co-ordinate bisection. Since the octree is biased by the

geometry and the distribution of the cells in the grid, the partitions tend to follow the same biasing

and the resulting partitions have a better surface-to-volume ratio. Figure 11 shows the global

percentage of nodes on interpartition boundaries plotted against the number of nodes per partition for

the sphere, HSCT without engines and HSCT with engines hybrid grid. The global percentage is

calculated by dividing the total number of nodes on interpartition boundaries by the total number of

nodes in the grids. The curves are very similar even though the grids have different distributions of

cells and nodes. This similarity shows that the current partitioning method yields approximately the

same partition qualities for entirely different grids and geometries.

5. PARALLEL PERFORMANCE OF ADAPTIVE METHOD

A partitioned memory multiple-instruction=multiple-data (MIMD) architecture typically consists of a

collection of multiple processors connected together by a high-speed interconnection network. Each

processor has the freedom of executing its own set of instructions on its data. There is no notion of

shared memory and the only way that processors can interact is through the connecting network. The

Intel Paragon and the IBM SP2 are examples of such an architecture.

The same user programme is executed on all the processors, each with its own set of data. Co-

ordination among processors is achieved through message passing, for which `send' and `receive'

primitives are provided. The programming paradigm is essentially that of any ordinary sequential

machine. That is, the actual structure of any programme written for a parallel machine has basically a

sequential form with additional calls to the message-passing routines for synchronization among the

processors. The message-passing libraries used for this work are based on the message-passing

interface (MPI). The MPI provides a standard so that parallel applications are portable among

Figure 11. Geometry independence of octree-based partitioning. Global percentage of nodes on partition interface versus
number of nodes per partition for sphere, HSCT without engines and HSCT with engines tetrahedral grids: e, sphere

geometry, � , HSCT without engines; u, HSCT with engines

OCTREE PARTITIONING OF HYBRID GRIDS 71

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

different parallel machines and clusters of workstations.3 To examine the scalability of a parallel

code, measurements are made of the execution times and communication times for an increasing

number of processors. An ideal parallel code would require exactly half as much execution time for

double the number of processors. Also, the amount of time spent in communication should not

increase drastically with additional processors.

The following subsections present the results obtained for parallel simulation of viscous ¯ow and

parallel hybrid grid adaptation. The ®rst two subsections examine the scalability of the solver and

adapter when run on the Intel Paragon. Cases involving a duct and sphere geometry are explored by

examining the execution and communication times as the number of processors increases. The ®nal

subsection discusses results for the parallel solver on the Intel Paragon and the IBM SP2 for the

HSCT aircraft con®guration with and without engines.

5.1. Parallel performance of Navier±Stokes solver

Two cases are considered for simulation of viscous ¯ow on the Intel Paragon. The ®rst case is

viscous ¯ow over a cylindrical bump in a channel. Supersonic ¯ow with Mach number M1 � 1�4 and

a Reynolds number of 16,000 is computed. This has been a standard test case for Navier±Stokes

solvers. The hybrid grid for this case consists of 18,000 prisms and 162,000 tetrahedra. The second

case tested on the Intel Paragon is the case of a sphere in a supersonic ¯ow with Mach number

M1 � 1�4 and a Reynolds number of 1000. The hybrid grid used for this case consists of 57,000

prisms and 104,000 tetrahedra. Investigation of accuracy of the solver for various cases is reported in

Reference 12.

Figure 12(a) shows the reduction in execution times per time step of the parallel solver as a

function of the number of processors. The scale on the axes is logarithmic with base two. It is

observed that the slope of the curves is close to the ideal reduction of the execution time with

increasing number of processors. The deviation from the ideal reduction in time is attributed to a

slight load imbalance, since the prisms and tetrahedra are divided into separate partitions. This slight

imbalance results in a small increase in execution time from the one- to two-processor channel cases.

For the one-processor case the entire hybrid grid is used, but for the two-processor case one partition

contains all the prisms and the other has all the tetrahedra, so a slight load imbalance arises. However,

the imbalance between the prism and tetrahedral partitions does not affect the overall scaling of the

parallel solver.

Figure 12(b) shows the communication times per time step of the solver as a function of the

number of processors. It is observed that the pipeline exchange becomes quite expensive as the

number of processors increases. In contrast, the parallel exchange time does not increase as the

number of partitions increases. The parallel exchange strategy results in communication times that

remain relatively constant as the number of processors increases for the channel and sphere cases.

5.2. Parallel performance of hybrid grid adapter

Adaptive local re®nement of a hybrid prismatic=tetrahedral grid is now considered for the cases of

supersonic channel ¯ow over a bump and supersonic ¯ow around a sphere. In order to examine the

scalability of the adapter, the same hybrid grid used by the solver is adapted once by dividing a

certain percentage of cells within each processor partition. For the cases considered, 10% of the cells

are re®ned in each subdomain. The total execution time for this step is measured on each processor.

The total time for execution of the algorithm is taken to be the maximum of all the individual

processor timings.

Scalability of parallel execution times for the grid adapter using the channel and sphere geometries

is shown in Figure 13(a). The scale on the axes is logarithmic with base two. It is observed that the

72 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

reduction in execution time is close to the ideal slope. The deviation of the actual times from the ideal

times for the larger number of processors is caused by the larger relative communication times and

the reduction in work for each processor. As the number of processors increases, the amount of work

decreases and in this case the processors do not have enough calculations to keep them busy. One

other item to note is that the calculations for the adapter are dominated by the tetrahedral adaptation.

The prismatic adaptation reduces to a 2D adaptation on the surface, which is much faster than the 3D

adaptation for the tetrahedra. The communication times for the adapter with increasing number of

processors are presented in Figure 13(b). The parallel exchange strategy is employed. The ®gure

shows that the communication times remain relatively the same with increasing number of

processors. Also, the communication times are small compared with the amount of execution time for

adaptation.

5.3. Parallel adaptive simulation of viscous ¯ow around the HSCT aircraft

Simulation of viscous ¯ow around the HSCT aircraft con®guration is now considered. Figure 14

shows the entropy contours at three stations when simulating a subsonic �M1 � 0�3�, high-angle-of-

attack �a � 17�8�� viscous ¯ow with Re � 106 around the HSCT aircraft without engines.14 The

growth of the primary vortex and the development of the secondary vortex are clearly visible. Several

of the partitions obtained using the octree method were run on the Intel Paragon and the IBM SP2.

Figure 12. Scaling of parallel solver (a) execution and (b) communication times with number of processors on Intel Paragon.
Cases of hybrid grids in a channel (18,000 prisms, 162,000 tetrahedra) and around a sphere (57,000 prisms, 104,000 tetrahedra):

e, channel; � , sphere; Ð, ideal slope for proportional reduction in time

OCTREE PARTITIONING OF HYBRID GRIDS 73

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

The prismatic and tetrahedral regions of the grid are divided into the same number of subdomains.

These subdomains are then combined to form the hybrid partitions, resulting in a better load balance.

Figure 15 presents the scalability results for parallel execution of the solver for the HSCT with and

without engines. The scale on the axes is logarithmic with base two. The execution times per time

step for increasing number of processors exhibit a proportional reduction with only a slight deviation

from the ideal reduction in time. The deviation from the ideal for the cases run on the IBM SP2 is

attributed to the larger relative communication times and not enough work to keep the processors

busy. It should be noted that approximately 10 processors on the IBM SP2 take about the same

amount of execution time as one processor on the Cray C90. The communication times per time step

for this case are shown in Figure 16. The communication times remain relatively constant with

increasing number of processors. Furthermore, the times are small when compared with the execution

time of the solver.

After the initial solution was obtained, the mesh was adapted, resulting in a mesh with

approximately 512,000 prisms and 366,000 tetrahedra. Figure 17 shows the surface triangulation for

the prisms before and after adaptation for 16-processor case. Most of the adaptation has occurred on

the upper surface of the aircraft, especially near the wing±fuselage junction, owing to the large vortex

coming from the wing leading edge near the front of the aircraft for this angle of attack. The

Figure 13. Scaling of (a) execution and (b) communication times with number of processors for parallel adaptation on Paragon.
No appreciable increase in communication times on Paragon using parallel exchange strategy. Cases of hybrid grids in a
channel (18,000 prisms, 162,000 tetrahedra) and around a sphere (57,000 prisms, e, channel; � , sphere, Ð, ideal slope for

proportional reduction in time

74 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

overlapping grid lines seen in the ®gure near the wing leading and trailing edges are due to the

plotting package showing the lower surface grid. The total time required to adapt this 16-processor

case was 18�3 s on the IBM SP2. For this case the adaptation is not uniform in all the subdomains, so

now an imbalance exists among the processors. However, the octree-based partitioning approach

discussed earlier could be used in parallel to dynamically rebalance the load.26,27

Figure 15. Scalability results for parallel execution of solver on Paragon and SP2 for HSCT aircraft con®gurations. Cases of
hybrid grids around HSCT without engines (176,000 prisms, 170,000 tetrahedra) and HSCT with engines (395,000 prisms,
488,000 tetrahedra): e, HSCT without engines on Paragon; � , HSCT without engines on SP2; u, HSCT with engines on SP2;
Ð, ideal slope for proportional reduction in time

Figure 14. Entropy contours at three stations for subsonic, high-angle-of-attack viscous ¯ow simulation �M1 � 0�3; a � 17�8��
about HSCT aircraft. Growth of the primary vortex and development of the secondary vortex are clearly visible. Case of hybrid

grid with 176,000 prisms and 170,000 tetrahedra

OCTREE PARTITIONING OF HYBRID GRIDS 75

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

Figure 16. No appreciable increase in communication times for solver on Paragon and SP2 using parallel exchange strategy.
Cases of hybrid grids around HSCT without engines (176,000 prims, 170,000 tetrahedra) and HSCT with engines (395,000
prisms, 488,000 tetrahedra): e, HSCT without engines on Paragon; � , HSCT without engines on SP2; u, HSCT with

engines on SP2

Figure 17. Surface triangular of HSCT aircraft con®guration without engines: (a) before adaptation (176,000 prisms, 171,000
tetrahedra); (b) after adaptation (512,000 prisms, 366,000 tetrahedra)

76 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

6. CONCLUDING REMARKS

The octree-based partitioner results in load-balanced subdomains that are biased to the computational

domain. The sizes and distributions of the octants follow the shape and cell clustering of the mesh

geometry. This results in better partitions compared with co-ordinate bisection of the grid cells

themselves. Furthermore, the octree-based method gives similar-quality partitions for very different

geometries, namely the channel, sphere and HSCT aircraft con®gurations. The partition qualities

obtained from the octree-based partitioning are about the same as RSB, but RSB is not as effective on

dynamic meshes in a parallel environment. Parallel implementation of the Navier±Stokes solver and

hybrid grid adapter yields near-ideal scalability for the channel and sphere geometries on the Intel

Paragon. Viscous ¯ow simulations around the HSCT aircraft with and without engines will result in

near-ideal scalability on both the Intel Paragon and the IBM SP2.

ACKNOWLEDGEMENTS

The authors would like to thank Horst Simon for providing us with the RSB partitioning code Version

2.2 written by Steve Barnard and Horst Simon. This work was supported by NSF Grant ASC-

9357677 (NYI program) and Texas Advanced Technology Program (ATP) Grant #003658-413.

Parallel computing time on the Intel Paragon and IBM SP2 was provided by the NAS Division of

NASA Ames Research Center. Supercomputing time was provided by the High Performance

Computing Facility at the University of Texas at Austin.

REFERENCES

1. T. L. Holst, M. D. Salas and R. W. Claus, `The NASA Computational Aerosciences ProgramÐtoward tera¯op computing',
AIAA Paper 92-0558, 1992.

2. H. D. Simon, `Seven years of parallel computing at NAS (1987±1994): what have we learned?', AIAA Paper 95-0219,
1995.

3. `MPI: a message passing standard', Int. J. Supercomput. Appl. High Perform. Comput., 8, (1994).
4. M. J. Berger and S. H. Bokhari, `A partitioning strategy for nonuniform problems on multiprocessors', IEEE Trans.

Comput., C-36, 570±580 (1987).
5. C. Farhat and M. Lesoinne, `Automatic partitioning of unstructured meshes for the parallel solution of problems in

computational mechanics', Int. j. nuer. meth. engng., 36, 745±764 (1993).
6. A. Posthen, H. D. Simon and K.-P. Liou, `Partitioning sparse matrices with eigenvectors of graphs', SIAM J. Matrix Anal.

Appl, 11, 430±452 (1990).
7. H. D. Simon, `Partitioning of unstructured problems for parallel processing', Tech. Rep. RNR-91-008, NASA Ames

Research Center, Moffett Field, CA, 1991.
8. G. Karypis and V. Kumar, `A fast and high quality multilevel scheme for partitioning irregular graphs', Tech. Rep. TR 95-

035, Department of Computer Science, University of Minnesota, 1995 (a short version appears in Int. Conf. on Parallel
Processing, 1995).

9. E. R. Barnes, `An algorithm for partitioning the nodes of a graph', SIAM J. Alg. Disc. Meth., 3, 541 (1982).
10. T. J. Baker, `Developments and trends in three dimensional mesh generation', Appl. Numer. Math., 5, 275±304 (1989).
11. Y. Kallinderis and S. Ward, `Prismatic grid generation for 3-D complex geometries', AIAA J., 31, 1850±1856 (1993).
12. V. Parthasarathy and Y. Kallinderis, `Adaptive prismatic±tetrahedral grid re®nement and redistribution for viscous ¯ows',

AIAA J., 34, 707±716 (1996).
13. Y. Kallinderis, A. Khawaja and H. McMorris, `Hybrid prismatic=tetrahedral grid generation for viscous ¯ows around

complex geometries', AIAA J., 34, 291±298 (1996).
14. A. Khawaja, H. McMorris and Y. Kallinderis, `Hybrid grids for viscous ¯ows around complex 3-D geometries including

multiple bodies', AIAA Paper 95-1685-CP, 1995.
15. R. Lohner and J. Baum, `Numerical simulation of shock interaction with complex geometry three-dimensional structures

using a new adaptive H-re®nement scheme on unstructured grids', AIAA Paper 90±0700, 1990.
16. M. J. Aftosmis, `Viscous ¯ow simulations using upwind method for hexahedral adaptive meshes', AIAA Paper 93-0772,

1993.
17. R. Biswas and R. Strawn, `A new procedure for dynamic adaptation of three dimensional unstructured grids', AIAA Paper

93-0672, 1993.

OCTREE PARTITIONING OF HYBRID GRIDS 77

1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998)

18. Y. Kallinderis, `Grid adaptation by redistribution and local embedding', in Lecture Notes for 27th Computational Fluid
Dynamics Lecture Series, Von Karman Institute for Fluid Dynamics, Brussels, 1996.

19. A. Vidwans and Y. Kallinderis, `Uni®ed parallel algorithm for grid adaptation on a multiple-instruction multiple-data
architecture', AIAA J., 32, 1800±1807 (1994).

20. H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C. OÈ zturan and M. S. Shepard, `Load balancing for the parallel
adaptive solution of partial differential equations', Appl. Numer. Math., 16, 157±182 (1994).

21. Z. Weinberg and L. N. Long, `A massively parallel solution of the three dimensional Navier±Stokes equations on
unstructured, adaptive grids', AIAA Paper 94-0760, 1994.

22. M. S. Shepard, et al., `Parallel automated adaptive procedures for unstructured meshes', Scienti®c Computation Research
Center Rep. 11-1995, Renesselaer Polytechnic Institute, Troy, NY, 1995.

23. R. D. Williams, `Supersonic ¯uid ¯ow in parallel with an unstructured mesh', Concurrency Pract. Experience, 1, 51±62
(1989).

24. V. Venkatakrishnan, H. D. Simon and T. J. Barth, `A MIMD implementation of a parallel Euler solver for unstructured
grids', J. Supercomput., 6, 117±137 (1992).

25. V. Venkatakrishnan, `Parallel implicit unstructured grid Euler solvers', AIAA Paper 94-0759, 1994.
26. T. Minyard, Y. Kallinderis and K. Schulz, `Parallel load balancing for dynamic execution environments', AIAA Paper 96-

0295, 1996.
27. T. Minyard and Y. Kallinderis, `Applications of grid partitioning and parallel dynamic load balancing', AIAA Paper 97-

0879, 1997.

78 T. MINYARD AND Y. KALLINDERIS

INT. J. NUMER. METH. FLUIDS, VOL. 26: 57±78 (1998) # 1998 John Wiley & Sons, Ltd.

